
Physical structure of a DBMS

Tecnologie delle Basi di Dati M

Architecture of a DBMS

2

Data, Indices,

Catalogs, Log

Physical layer: memory manager

Logical layer: SQL manager

SQL commands JDBC apps

Logical layer

3

Logical layer: SQL manager

Query manager

Physical layer: memory manager

SQL commands JDBC apps

Auth manager Catalog manager

Optimizer Query plan evaluator

Physical layer

4

Data, Indices,

Catalogs, Log

Physical layer: memory manager

Logical layer: SQL manager

Transaction

manager

Access

methods

Buffer

manager

Storage

manager

Concurrency

manager

Storage

structures

Abstraction levels

The views describe
the users' point of view

The logical schema defines
the logical structure

The physical schema
describes how the data
is actually stored on disk

5

Data

Physical schema

Logical schema

View 1 … View n

logical

indipendence

physical

indipendence

Users of a DBMS

App users

No specific knowledge

Non-programmer users

Interactive access

SQL (DML)

App programmers

JDBC

DB designers

Conceptual/logical design

SQL (DDL)

DB Administrators

Specific knowledge
of the DBMS

Tuning of DBMS

DBMS programmers

They code DBMS

6

Storage manager

Memory of a computer is organized
in a three-level hierarchy:

1. main memory (RAM)

2. secondary storage (magnetic disks)

3. tertiary storage (tape and optical jukeboxes)

From the DBMS point of view, we can ignore:
0. internal memory (cache and logs)

4. off-line memory

7

Performance of a memory

Given a memory address, performance
is measured in terms of access time,
defined as the sum of:

latency
(time needed to access the first byte)

transfer time
(time needed to move data)

8

transfer speed

data size
access time = latency +

Main memory

Characteristics of main memory
(e.g., DIMM):

Access time: ~50 ns

Speed: ~3 GB/s

Capacity: ~1 GB

Volatile

Cost: ~30 €/GB

9

Secondary memory

Characteristics of secondary memory
(e.g., HD):

Access time: ~5 ms

Speed: ~120 MB/s

Capacity: <2 TB

Non-volatile

Cost: ~0.10 €/GB

10

Tertiary memory

Characteristics of tertiary memory
(e.g., DAT72):

Access time: ~30 s

Speed: ~3 MB/s

Capacity: 72 GB

Non-volatile

Cost: ~0.10 €/GB

11

Implications for DBMSs

Because of its size, a DB is normally stored on disk
(possibly also on other types of devices)

Data must be transferred to main memory to be processed
by the DBMS

Data are not transferred as single tuples, rather as blocks
(or pages, a term commonly used when data are in memory)

Often, I/O operations are the system bottleneck, it is necessary
to optimize the physical implementation of the DB by way of:

Efficient organization of tuples on disk

Efficient access structures

Efficient management of memory buffers

Efficient query processing strategies

12

Hard disk

13

platter head

arm

spindle

track

sector of

a track

sector

Every track is

divided in blocks

composed of a fixed

number of sectors

The set of

corresponding tracks

on all platters is called

a cylinder

Every block can be

identified by 3

coordinates:

Cylinder, Head, Sector

block

Capacity evolution

Density evolution

The heads

During writing, heads convert bits into magnetic pulses, which
are then recorded on the disc(s) surface; during reading, heads
perform the reverse conversion

They are very critical components for the effects they have on
performance and are the most expensive parts of a HD

16

An example: Seagate Barracuda 7200.12

Drive specification ST31000528AS

Interface Serial ATA

Formatted capacity 1000 Gbytes

Guaranteed sectors 1,953,525,168

Heads 4

Discs 2

Bytes per sector 512

Sectors per track 63

Read/write heads 16

Cylinders 16,383

Recording density 1413 kbits/in max

Track density 236 ktracks/in avg

Areal density 329 Gbits/in2 avg

Spindle speed 7,200 RPM

Internal data tr. rate 1695 Mbits/sec max

Sustained data tr. rate 125 Mbytes/sec max

I/O data-tr. rate 300 Mbytes/sec max

Cache buffer 32 Mbytes

Average latency 4.16 msec

Power-on to ready <10.0 sec max

Standby to ready <10.0 sec max

Track-to-track seek time <1.0 msec read;

 <1.2 msec write

Average seek, read <8.5 msec

Average seek, write <9.5 msec

17

Performance

Internal: they depend on

Mechanical characteristics

Techniques for encoding and storage of data

Disk controller (interface between disk HW and the
computer)

It accepts high-level commands to read/write sectors
and controls the mechanism

It adds information between sectors for error checking (checksum)

It checks correctness of the writes re-reading written sectors

It performs the mapping between logical addresses of blocks and disk
sectors

External: they depend on

Interface type

Architecture of the I/O sub-system

File system
18

Internal performance

The most important figure is latency (the time taken to get to
information of interest), composed by:

Command Overhead Time:
time needed for issuing commands to the drive

It is of the order of 0.5 ms and can be neglected

Seek Time (Ts):
time needed by the arm to move to the desired track

The average seek time, of the order of 2-10 ms, is, in the case of tracks with
a constant number of sectors, 1/3 of the maximum seek time

The seek time for writing is higher by about 1 ms
of the seek time for reading

Settle Time:
time needed by the arm for stabilizing

Rotational Latency (Tr):
wait time for the first sector to be read

Average rotational latency is 1/2 of the worst case

About 2-11 ms
19

Example: IBM 34GXP drive

20

Component

Best-Case Figure (ms)

Worst-Case Figure (ms)

Command

Overhead

0.5

0.5

Seek Time (Ts)

2.2

15.5

Settle Time

<0.1

<0.1

Rotational

Latency (Tr)

0.0

8.3

Total

2.8

28.4

Rotational Latency

Spindle Speed

(RPM)

Worst-Case Latency

(Full Rotation) (ms)

Average Latency

 (Half Rotation) (ms)

3,600

16.7

8.3

4,200

14.2

7.1

4,500

13.3

6.7

4,900

12.2

6.1

5,200

11.5

5.8

5,400

11.1

5.6

7,200

8.3

4.2

10,000

6.0

3.0

12,000

5.0

2.5

15,000

4.0

2.0

(60/Spindle Speed)* 0.5 * 1000

Transfer Rate

It is the maximum drive speed for reading/writing data

Typically in the order of 10 MB/s

It refers to the bit transfer speed from/to platters
to/from the controller’s cache

It can be estimated as:

 Example: With 512 bytes/sector, 368 sectors/track, 7200 rpm
transfer rate equals (512 x 368) / (60 / 7200) = 21.56 MB/s

In practice, transfer rate from/to HD are lower than the
nominal values (4-10 MB/s)

22

 (bytes/sector) x (sectors/track)

 rotation time

Pages

A block (or page) is:

a contiguous sequence of sectors on a single track

it is the (atomic) unit of I/O fro transferring data
to/from main memory

Typical values for the page size are some KB (4 - 64 KB)

Small pages means a higher number of I/O operations

Large pages often cause internal fragmentation
(pages only partially full) and require more memory
to be loaded

The page transfer time (Tt) from disk to main memory depends
on:

the page size (P)

the transfer rate (Tr)

23

Example

transfer rate of 21.56 MB/sec

Page size P = 4 KB

Tt = 4/(21.56*1024) = 0.18 ms

Page size P = 64 KB

Tt = 64 /(21.56*1024) = 2.9 ms

24

The physical DB

At the physical level, a DB consists of a set of files,
each seen as a collection of pages, of fixed size (e.g., 4 KB)

Each page stores several records
(corresponding to logical tuples)

In turns, a record consists of several fields,
with fixed and/or vaiable size,
representing the tuple’s attributes

25

The physical DB(cont.)

The DBMS “files” considered here do not necessarily
correspond to those stored in the OS file system

Extreme cases:
Every DB relations is stored in a separate file

The whole DB is stored in a single file

In practice, at the physical level, every DBMS exploits
specific solutions, very complex and flexible

26

The storage model of DB2

DB2 organizes the physical space
into tablespaces, each composed
as a collection of containers

Pro: flexibility

We can store different things
in different devices

To add new tables
we can add tablespaces

Every relation is stored into a single tablespace,
but a single tablespace can store several relations

Every container can be a device, a directory, or a file

The DBMS automatically balances data into containers

27

Using extents

Every container is divided into extents,
representing the minimum allocation entity on disk,
composed by a set of contiguous pages with size 4 KB
(default value for P)

The extent size
can differ among
tablespaces
and is chosen
when the tablespace
is created

Every extent stores data
of a single relation

28

Tablespace

Every database should contain at least three tablespaces, used
for storing different data:

catalogs (system tablespace)

user tables (one or more user tablespaces)

temporary tables (one or more user tablespaces)

29

Tablespace types

3 different types of tablespace exist:

SMS (System Managed Space)
storage is managed by the OS

DMS (Database Managed Space)
storage is managed by the user

Automatic Storage
is managed by the DBMS

30

Comparison among types (i)

Creation
SMS: CREATE TABLESPACE … MANAGED BY SYSTEM

DMS: CREATE TABLESPACE … MANAGED BY DATABASE

AS: CREATE TABLESPACE … [MANAGED BY AUTOMATIC STORAGE]

Defining containers
SMS: directory name

DMS: device or file (fixed size)

AS: automatic, containers exist in every path associated
 to the DB

31

Comparison among types (ii)

Initial allocation
SMS: OS-based (fragmentation likely)

DMS: at creation time (fragmentation unlikely when
 container=device)

AS: system/user: at creation time
 temporary: whenever needed

Modifying containers

SMS: not allowed

DMS: creating/removing containers
 (automatic balance)

AS: automatic

32

Comparison among types (iii)

Additional memory request
SMS: until file system is full

DMS: containers can be extended

AS: automatic extension of containers

Maintenance
SMS: none

DMS: creating/removing containers
 balancing containers

AS: reducing tablespace
 balancing containers

33

Comparison among types (iv)

Maximum size
SMS: n x maximum file size

DMS: 512 GB (64 TB for large tablespace)

AS: file system size

Object separability (e.g., tables and indices)
SMS: no, everything in the same tablespace

DMS: objects can be stored into different tablespaces

AS: objects can be stored into different tablespaces

34

Which is the best type?

AS
Large tables

Simplified management of container enlargement

Storing different objects (e.g., indices, tables)
into different tablespaces (performance)

DMS
Large tables

Control over where data are stored

Control over storage status

Storing different objects (e.g., indices, tables)
into different tablespaces (performance)

SMS
Small tables

Control over where data are stored

Control over storage status

35

Tablespace attributes

When a tablespace is created, it is possible to specify
a set of parameters

For example:
EXTENTSIZE: number of extent blocks

BUFFERPOOL: name of the buffer pool associated
to the tablespace

PREFETCHSIZE: number of pages to be transferred to memory
before they are actually requested

OVERHEAD: estimate of average latency time
for an I/O operation

TRANSFERRATE: estimate of average transfer time
for a page transfer

The last two parameters are used by the optimizer

 36

Why don’t we simply use the file system?

We will show that, performance of a DBMS
highly depend on the organization of data on disk

Intuitively, data allocation should aim to reduce data access
time

For this, we should know how (logically) data are
to be processed and which are (logical) relations
existing between data

The file system could be oblivious to all such information
Examples:

If two relations contain correlated data (e.g., by a join),
storing them in continuous cylinders could be a good idea,
so as to reduce seek time

If a relation contains BLOB attributes, storing them
in a different place (with respect to other attributes)
could be a good idea

 37

Organizing data in a file

File

File Header

Field 1 Field 2 Field 3 Field k … Record 0

Record 1 Field 1 Field 2 Field 3 Field k …

Field 1 Field 2 Field 3 Field k …

…

Record m

Page 0

Page 1

Page n

Reference schema (simplified)

Representing values

For every SQL data type a representation format is provided,
for example:

Fixed-length strings: CHAR(n)

We use n bytes, possibly using a special character for values shorter than n

Example: if A is typed CHAR(5), ‘cat’ is stored as cat

Variable-length strings: VARCHAR(n)

We use m+p bytes, with m (≤ n) bytes used to store actual characters
and p bytes to store the value of m (for n ≤ 254, p = 1)

Example: if A is typed VARCHAR(10), ‘cat’ is stored in 4 bytes as 3cat

DATE and TIME are usually represented as fixed-length strings

DATE: 10 characters YYYY-MM-DD; TIME: 8 characters HH:MM:SS

Enumerated types: we exploit an integer coding

Example: week = {SUN, MON, TUE, …, SAT} a single byte is needed

SUN: 00000001, MON: 00000010, TUE: 00000011, …

39

Fixed-length records

For every record type in the DB, we should define a
(physical) schema allowing to correctly interpret
the meaning of each byte composing the record

The simplest case arises (clearly) when all records have fixed
length, since (besides logical information), we simply need
to specify the order in which the attributes are stored
in the records (if this is different from the default)

 CREATE TABLE MovieStar (

 name CHAR(30) PRIMARY KEY,

 address CHAR(255),

 gender CHAR(1),

 birthdate DATE)

40

30 285 0 296
286

offset

name address birthday g

Variable-length records

In case of records with a variable length, we have some
alternatives, also considering problems introduced by updates,
which can modify the length of some attributes (and thus of
the record)

A typical solution consists in storing all fixed-length attributes
first, followed by all variable length attributes; for every
variable length attribute we have a “prefix pointer”, containing
the address of the first byte of the field

 CREATE TABLE MovieStar (

 name VARCHAR(30) PRIMARY KEY,

 address VARCHAR(255),

 gender CHAR(1),

 birthdate DATE)

41

record length

gender birthdate name = ‘pippo’ address = ‘via pluto 23’

0 4 8 12 13 23 28 40

23 28 40

Size of the data is 28 bytes,

But the record is 40 bytes overall

Record Header

In general, every record includes a header that,
besides the record length, can contain:

The ID of the relation of the record

The ID of the record in the DB (univocal)

A timestamp, indicating when the record was entered or last
modified

The specific format of the header is clearly different from
DBMS to DBMS

42

Organizing records into pages

Normally, the size of a record is (very) lower of that of a page
Special techniques exist (but we will not see them) to manage
cases of “long tuples”, whose length exceeds the page size

For the case of fixed-length records, the page organization
could look like this:

Page header stores information like:
ID of the page in the DB

A timestamp indicating when the page was last modified

The ID of the relation of the records stored in the page, etc.

Normally, a record is completely contained in a page
Some wasted space might exist

 43

Page

header
record 1 record 2 record n …

A simple example

In the previous example, with fixed-length records of 296
bytes, we suppose a page size of P = 4 KB = 4096 byte

Supposing that the page header requires 12 bytes,
4084 bytes are available for data

Thus, a page can contain as much as 13 records (4084/296)
In every page, at least 236 byte will always remain unused

… if the MovieStar relation contains 10000 tuples,
at least 770 pages are needed to store it (10000/13)

… if a page read from disk requires 10 ms,
reading all the tuples would require about 7.7 seconds

44

Organizing pages into slots

The typical format of a page in a DBMS looks like this

45

The directory contains a pointer for every
record in the page
This way, the record identifier (RID)
in the DB consists of a pair:

PID: page identifier

Slot: location within the directory

This allows us to both quickly locate
a record and reallocating it within the
page without changing its RID

Page header Record Directory

Overflow records

If an update increases the record size and no space is left on the
page, the record is moved to another page (it “overflows”)

The record RID, however, does not change,
but a level of indirection is introduced

Having several overflow records clearly degrades performance,
thus a periodical file reorganization is needed

46

Reading and writing pages

Reading a single tuple requires bringing the corresponding page
into main memory, in a DBMS-managed area called buffer pool

Every buffer in the pool could host the copy of a disk page

Managing the buffer pool is fundamental for performance,
and a DBMS module is devoted to this, the Buffer Manager (BM)

The BM is called also when writing to disk,
because we should update a modified page on disk

The BM plays a fundamental role, as we shall see, in
transaction management, in order to guarantee the DB
integrity when faults are present

In DB2, we could define several buffer pools,
but every tablespace should be associated
to a single buffer pool

47

The Buffer Manager

When a page is requested, the Buffer Manager (BM)
operates as follows:

If the page is already contained in a buffer,
the buffer address is returned to the caller

If the page is not already in main memory:

The BM selects a buffer for the requested page

If such buffer contains another page,
this is written on disk, only if it was modified an no one is using it

At this point, the BM can read the page, copying it in the chosen buffer,
thus replacing the previous page

48

Interface of the Buffer Manager

The interface offered by the BM to other DBMS modules
includes four basic methods:

 getAndPinPage: requests the page to the BM an puts a “pin” on it, indicating that it is used

 unPinPage: releases the page, clearing a pin

 setDirty: indicates that the page has been modified, it is now “dirty”

 flushPage: forces the to be written on disk, making it “clean”

49

used buffer

free buffer

pincount

dirty

page

In-buffer pages

table Buffer Pool

getAndPinPage unPinPage setDirty flushPage

Buffer replacement policies

For operating systems, a common policy for choosing the page
to be replaced is the LRU (Least Recently Used), thus the page
chosen is the one which has been unused for the most time

In DBMSs LRU is often a bad choice, since for some queries
the “access pattern” to data is known, and it could thus be used
to operate more accurate choices, also able to greatly improve
performance

The hit ratio, or the ratio of requests needing no I/O operation,
is a synthetic indicator of the quality of a replacement policy
Example: we will see that join algorithms exist scanning tuples of
a relation for N times.
In this case, the best policy would be a MRU (Most Recently Used),
thus replacing the most recently used page!

… and this is another reason why DBMSs do not use (all)
services provided by OSs …

50

File organization

The way records are organized within the file affects both
efficiency of data access and storage occupation

In the following, we will see some basic organizations, namely:
Heap file

Sequential file

 … and we will evaluate them according to some typical
operations

For the sake of simplicity, we will:
Consider fixed-length records

Evaluate “costs” as number of I/O operations, assuming that

every page request results in a single I/O operation

In order to evaluate costs we however need some basic
information…

51

SQL catalogs statistics

Every DBMS keeps some catalogs, that is relations
describing the DB at both the logical and physical levels

Catalogs which are interesting for us at this moment are those
reposting statistic information about relations, in particular:

52

SQL catalog SQL attribute Description Symbol

SYSSTAT.TABLES CARD Number of tuples in the

relation

NR or NR(table)

SYSSTAT.TABLES NPAGES Number of pages storing

the relation

NP or NP(table)

SYSSTAT.COLUMNS COLCARD Number of distinct values

for the attribute

NK or NK(attribute)

SYSSTAT.COLUMNS LOW2KEY Second-lowest value LK or LK(attribute)

SYSSTAT.COLUMNS HIGH2KEY Second-highest value HK or HK(attribute)

Cost model

We are interested in estimating the cost
of the following operations:

Search by key

Range search

Insertion of a new record

Deletion of a record

Updating the value of a record attribute (key/non key)

We will assume as base cost the number of accesses to
secondary storage

Simplifying hypothesis (why?)

53

Heap file

Also known as serial file, is the simplest one since it is
characterized by appending new records at the end of the file

If some record is deleted, in order to be able to re-use its space
without reading the whole file, a mechanism is needed to
quickly locate free space

54

H. Fonda LA male 1-1-11

Basinger Chicago female 3-3-33

record 0

record 1

record 2

record 3

header

Baldwin NYC male 2-2-22 record 4

Page management: linked list

The first option is to keep two double linked lists:
a list for full pages

a list for pages with some free space

Typically, with variable-length records, almost all pages will
contain some free space

In order to find a page with enough space to contain
a new record, we could be forced to scan the whole list

Alternative solution…

55

Page management: directory

A second option is to keep a page directory :
The directory itself is organized as a linked list of pages

Every directory entry identifies a page in the file
and can report the free space for each page

In order to find a page with enough space to contain
a new record, we can simply scan the directory (normally, much
smaller than the file)

Con: larger file size

56

The DB2 solution

Data pages grouped into extents

A page every 500 contains a Free Space Control Record (FSCR),
with a directory of free space within the next 500 pages (until
the next FSCR)

The page size (4/8/16/32 KB) can be specified when the
tablespace is created

Larger size for sequential access

Smaller size for random access

57

Heap file: operations and costs

The table summarizes the costs for basic operations:

58

Operation Description Cost

Search by key Search is performed by sequentially

scanning all the pages

NP/2 average

NP maximum

NP if non existing

Range search We have to look all the pages,

anyway

NP

Insertion We append at the end of the file 2

Deletion Only a record is deleted C(search) + 1

Update Only a record is updated C(search) + 1

Sequential file

In a sequential file, records are kept sorted according to the
values of a given attribute (or of a combination of attributes)

Clearly, now insertion should be performed by preserving the
sort order

Usually, some free space is left within each page
(otherwise we can tolerate overflow records and reorganize
the file periodically)

59

Brighton A-127 750

Downtown A-101 500

Downtown A-101 600

Mianus A-215 700

Perryridge A-102 400

Perryridge A-201 900

Sequential file: operations and costs

For simplicity, we consider that the file is sorted according to
values of the primary key (or another key)

60

Operation Description Cost

Search by key We use binary search to locate the

page containing the record
log2(NP)

Range search We only read pages containing

key values in the range [L,H]

C(search) - 1 +

 (H – L) * NP

 HK – LK

Insertion We suppose there is enough free

space

C(search) + 1

Deletion Only a record is deleted C(search) + 1

Update Only a record is updated C(search) + 1

